Quantcast
Channel: Recent Questions - Stack Overflow
Viewing all articles
Browse latest Browse all 12111

CNN training loss stuck at values between 51-60

$
0
0

I'm trying to create my first CNN to predict apartment prices. The problem is that after 1-5 epochs loss value is stuck and doesn't decrease, only increasing a little and then decreasing again. Thanks in advance)

from keras.layers import Conv2D, MaxPool2D, Dense, BatchNormalization, Flattenfrom keras.optimizers import Adamfrom keras.models import Sequentialfrom keras.preprocessing.image import ImageDataGeneratorfrom PIL import Imageimport pandas as pdtrain_data_df = pd.read_excel('train_data_cnn.xlsx')test_data_df = pd.read_excel('test_data_cnn.xlsx')datagen = ImageDataGenerator(rescale=1./255)train_data = datagen.flow_from_dataframe(dataframe=train_data_df, x_col='filepath', y_col='price', class_mode='raw', directory=r'C:\Users\Kojimba\PycharmProjects\DeepEval\CNN', batch_size=20)test_data = datagen.flow_from_dataframe(dataframe=train_data_df, x_col='filepath', y_col='price', class_mode='raw', directory=r'C:\Users\Kojimba\PycharmProjects\DeepEval\CNN', batch_size=20)model = Sequential([    Conv2D(32, kernel_size=32, strides=(2,2), padding='same', activation='relu', input_shape=(256, 256, 3), data_format='channels_last'),    #BatchNormalization(),    MaxPool2D(strides=2),    Conv2D(128, kernel_size=64, strides=(4,4), padding='same', activation='relu'),    #BatchNormalization(),    MaxPool2D(),    Flatten(),    Dense(8, activation='relu', kernel_initializer='random_normal', bias_initializer='zeros'),    Dense(8, activation='relu', kernel_initializer='random_normal', bias_initializer='zeros'),    Dense(1, activation='linear', kernel_initializer='random_normal', bias_initializer='zeros')])model.compile(Adam(lr=0.01, beta_1=0.98, beta_2=0.999), loss='mean_absolute_percentage_error')model.summary()model.fit_generator(train_data, steps_per_epoch=24, epochs=100)model.evaluate_generator(test_data)

Viewing all articles
Browse latest Browse all 12111

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>